Reactor Modeling of a Non-Catalytic OCM Process
نویسندگان: ثبت نشده
چکیده مقاله:
ge-newline"> One method for conversion of methane to more valuable products is by non-catalytic gas-phase oxidative coupling of methane (OCM), through which methane is converted into ethylene. The product of this process is ethylene, accompanied by acetylene, ethane, a small quantity of three carbon compounds as coupling products, and carbon oxides due to complete oxidation of hydrocarbons. The kinetic model proposed for the OCM process consists of 75 elementary reactions and 23 chemical species. In previous studies, the reactor-kinetic modeling of this process, was implemented in a laboratory micro-reactor at constant temperature and pressure. Considering that this process proceeds with severe variation in the enthalpy, in the present study, in addition to isothermal, the operation of the system has also been modeled for the adiabatic state. The modeling has been carried out in a tubular reactor system. Comparison of the qualitative and quantitative results of the model with experimental data at constant temperature shows that the proposed kinetic model predicts the experimental results properly. Furthermore, in the present study, the effect of various parameters on the operation of the system has also been examined. These studies have been performed in the following ranges of pressure, temperature and CH4/O2 ratio respectively: 1≤ P ≤ 10 (bar), 950≤ T≤ 1100 (K), 4 ≤ CH4/O2 ≤ 10. It has been shown that, by increasing the temperature, the reaction rate increases. Raising the total pressure of the system causes an increase in methane conversion and selectivities of desired products as well as the reaction rate. On the other hand, increasing the residence time in the reactor will result in conversion of desired products to undesirable ones. Finally, it is shown that by decreasing the ratio of methane to inlet oxygen, conversion of methane increases, selectivities of the desired products decrease and the heat released during the reaction rises.
منابع مشابه
Single Step and Non-Catalytic Process for Formaldehyde Production from Methane using Microchannel Reactor: Theoretical Analysis
Conventionally, methane is reformed into syngas, and subsequently converted into C1-oxygenates (methanol and formaldehyde). A novel option is the catalyst-free single-step conversion of methane to C1-oxygenates. This study presents a comprehensive model of methane partial oxidation to formaldehyde as an intermediate chemical species in methane oxidation process using microreactor. The dependenc...
متن کاملModeling and Simulation of Non Linear Process Control Reactor - Continuous Stirred Tank Reactor
Chemical reactors are the most influential and therefore important units that a chemical engineer will encounter. To ensure the successful operation of a Continuous Stirred Tank Reactor (CSTR) it is necessary to understand their dynamic characteristics. A good understanding will ultimately enable effective control systems design. The aim of this paper is to introduce some basic concepts of chem...
متن کاملModeling and Simulation a Catalytic Fixed Bed Reactor to Produce Ethyl Benzene from Ethanol
Ethyl benzene used increasingly each year is the raw material of producing styrene monomer. This substanceis produced from benzene alkylation with ethylene or ethanol, depending on the availability and cost of rawmaterials. In this study benzene alkylation in the presence of ethanol in a catalytic fixed bed reactor inthree states of isotherm, adiabatic and non-isotherm-non-adiabatic is mathemat...
متن کاملBubble Effectiveness in Cyclohexane Non-Catalytic Oxidation Process
The bubble effectiveness in liquid phase cylohexane non-catalytic oxidation process is discussed in this paper. Then the bubble effectiveness and a new proposed kinetic model are used in the mathematical model of the industrial reactor for the cyclohexane non-catalytic oxidation process. Furthermore, simulation and optimization based on this reactor model are carried out. The results of sim...
متن کاملBiodegradation Modeling of Nitrophenolic Pollutant in a Slurry Bubble Reactor
Biodegradation kinetics of 4-nitrophenol (PNP) in aqueous solution by a gram negative soil bacterium, Ralstoniaeutropha was firstly studied in a small scale batch reactor. The degradation of PNP was evaluated at initial PNP concentrations ranging from 3 mg/L to 14 mg/L. The rate of PNP consumption by the bacterium culture was modeled using Monod and Contois kinetics in batch condition. PNP degr...
متن کاملmodeling and simulation a catalytic fixed bed reactor to produce ethyl benzene from ethanol
ethyl benzene used increasingly each year is the raw material of producing styrene monomer. this substanceis produced from benzene alkylation with ethylene or ethanol, depending on the availability and cost of rawmaterials. in this study benzene alkylation in the presence of ethanol in a catalytic fixed bed reactor inthree states of isotherm, adiabatic and non-isotherm-non-adiabatic is mathemat...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 2
صفحات 3- 14
تاریخ انتشار 2005-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023